Barrys Icosikaihexagon Network Topology Design

By

Barry Lee Crouse

Introduction

Thank you for taking the time in reading this Scientific Work. I will be doing things a little differently in this paper.

This work will take a 26 sided polygon and use it for a not found U.S. Design patent application after 14 months and incorporate this into the Interface 19456 Design itself and create a Scientific paper. I will be using Solar energy convert it to Electro-Mechanical Energy. This work uses a lot of visual displays and uses Barrys Mechanical Space a highly adaptable math equation that is applicable to Physics, Math, and Computer Sciences in the realm of IP Packets and or Electro-Mechanical Energy.

This is the 3rd Design patent that was a unlisted Design Patent application after 14 months so I think it is best to protect the design by Incorporating this into a 26 sided polygon and not letting work go to wasted effort, time, or energy.

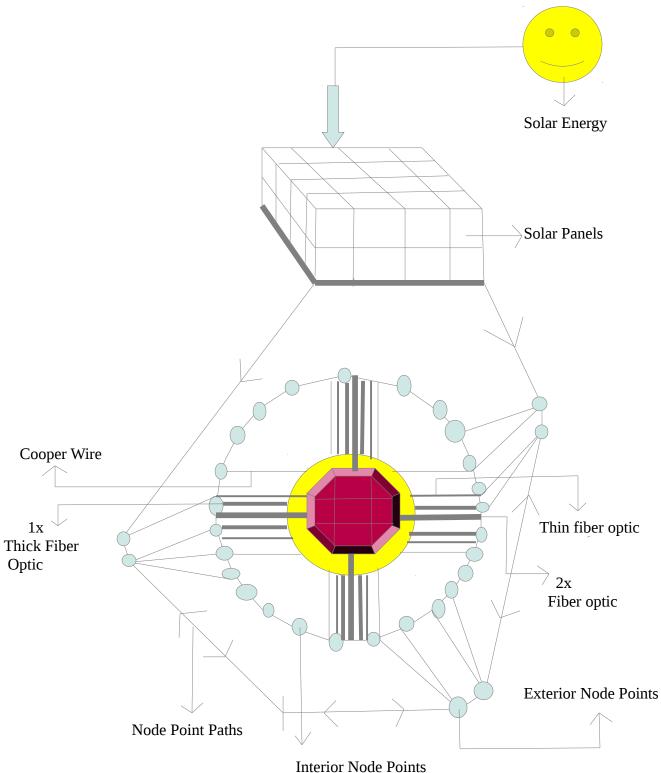
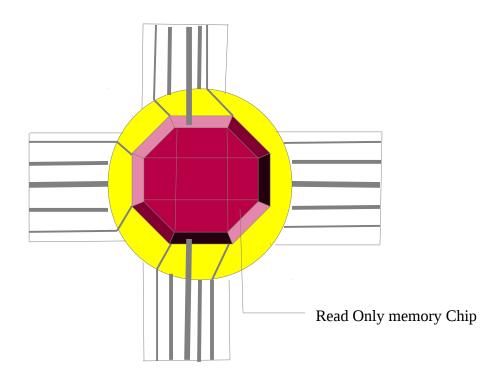

Once again Thank You!

Table of Contents

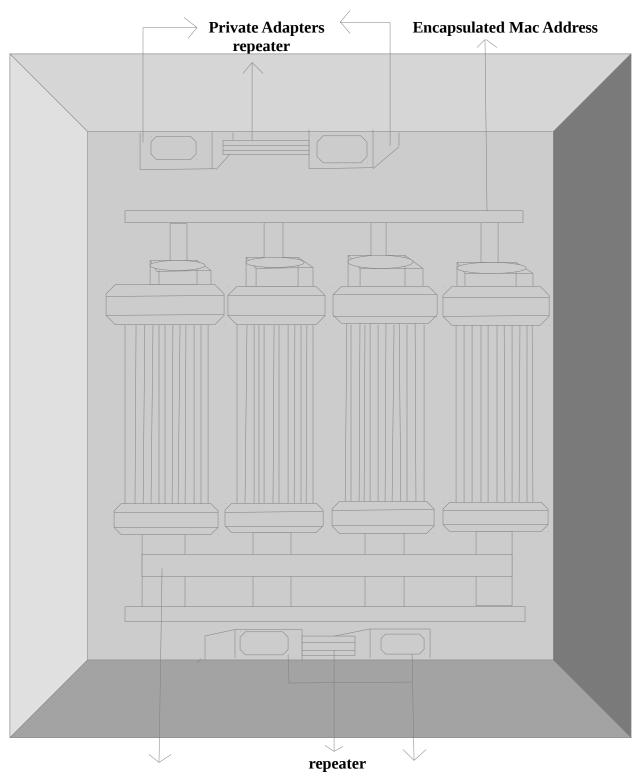

Chapter 1	Design Overview
Chapter 2	Read Only Memory ROM and Boolean Operators
Chapter 3	Barrys Mechanical Space
Chanter 4	Final Thoughts

Design Overview

Power Transmission Overall View 1-a

Power Transmission Detailed Interior View 2-a

Specifications

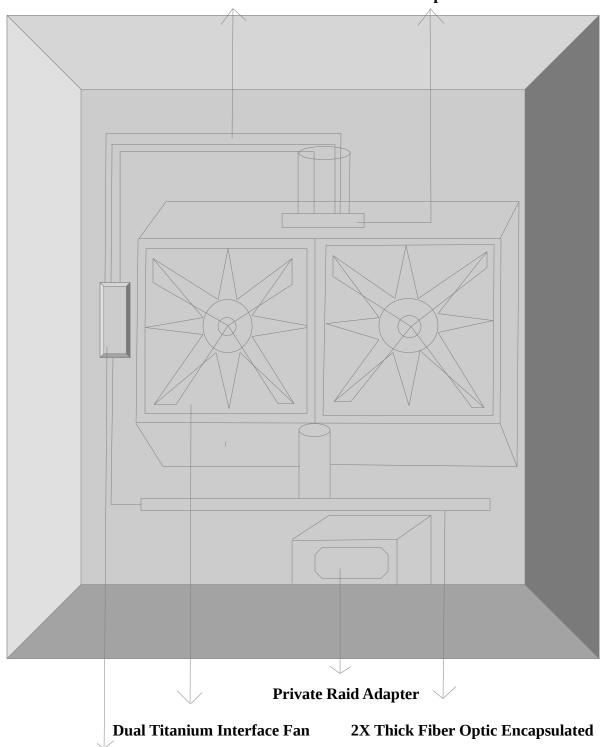

# of Wires	Bits per wire	Total Bits
2	1024	2048
2	4096	8192
2	8192	16384
1	19456	19456
		2 1024 2 4096 2 8192

System 19456 Interface Design – 3-a

Encapsulated Mac Address Laser Optic Lens 4 bank Fiber Optic Wires Dual Interface Bios

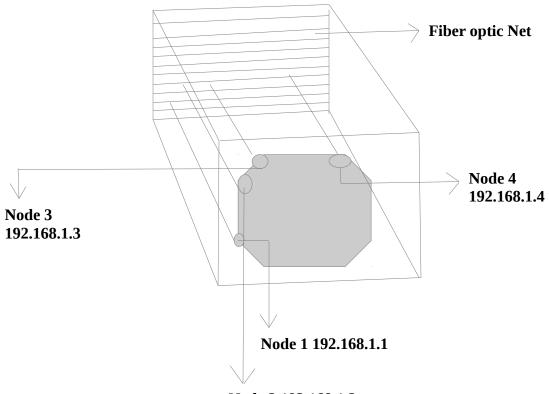
Fiber optic Private switch 16 Volt Battery Fiber optic Titanium coated Internal IP Geo locator

System 19456 Interface Design Left Right Side View 4-a

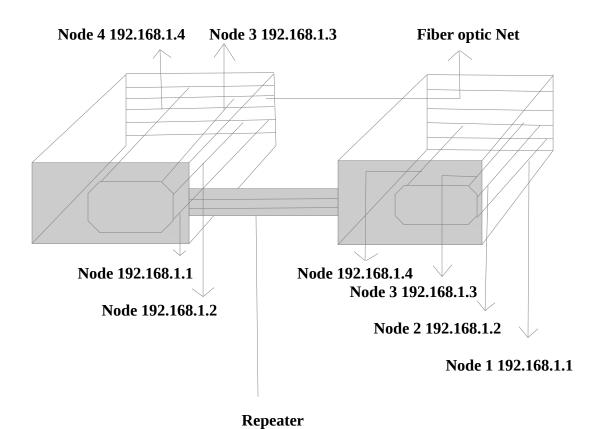


Fiber Optic 4 wire bank mac address

Private Adapters


System 19456 Interface Design Rear View 5-a

3 Silver wire communication monitor to bios repeater


Internal Fan Interface BIOS

Perspective View of Private Adapter 6-a

Node 2 192.168.1.2

Perspective View of Private Adapter Figure 7-a

Overview of Design

The first diagrams 1-a and 2-a show how energy transmission takes place from Solar to Electro-Mechanical Energy and how ROM Read only Memory loads a pre-set of parameters that cannot be erased such as a EPROM Erasable Program Read Only memory can do. In the next chapter, I will use Boolean Operators to test conditions also please note this is polled to measure metrics to adjust rates of transmissions. The next part of the process is to take the Electro-Mechanical Energy and transfer to the 19456 Interface Design labeled 3-a through 7-a.

Please view the following specifications below for power transmissions labeled 1-a and 2-a.

Internal Node Points	External Node Points	1 way paths	Alternate Paths
26	6	2	3

I will now provide a overview of The System 19456 Interface Design which is used to improve Computer Motherboards processing data that are more System Throughput Intensive coupled with Data Security at lower level in regards to the 7 stack OSI Layer 2nd layer Non-Rout able protocols demanding frames to be processed encapsulated in a more secured environment and not exposed to roaming wireless signals. This is achieved by protecting the MAC Address via encapsulation using a 2X Thick Fiber Optic at 19456 bits. Node points on the private adapters use a Class C Private address with thin fiber optic nets for faster transmissions according to the specs should be 8192 bits. I would like to also make another point by using a Dual Titanium Fan heat is better managed along with 3 silver wires to poll the heat so that adjustments can be made for the rate of transmissions or bits. Please also note a fiber optic switch on the Interface board is also placed.

Read Only Memory ROM and Boolean Operators

I will now begin to load a table below and test conditions

Load Read-Only-Memory -table

Variable	Material	wire number	total #
a	Copper Field	1	1024
b	Copper Field	2	1024
С	Thin Fiber Optic Field	1	4096
d	Thin Fiber Optic Field	2	4096
e	1 X Thick Fiber Optic Field	1	8192
f	1 X Thick Fiber Optic Field	2	8192
g	2 X Thick Fiber Optic Field	1	19456

Load Encryption-table-module-table

Variable	Encryption strength # bits
aCopperField	2048
bThinFiberopticfield	4096
c1xThickFiberopticfield	5120
d2xThickfiberopticfield	8192

{

The next step is to load the menu and test Boolean operators.

Load Read-Only-memory-Table

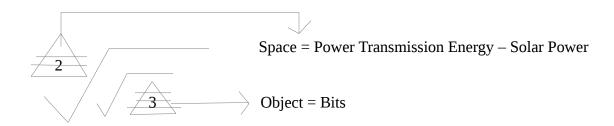
******	****************	***
**		**
**	Select " Copper Field"	**
**		**
**	Select "Thin Fiber Optic Field"	**
**	•	**
**	Select " 1 X Thick Fiber Optic Field"	**
**	•	**
**	Select " 2 X Thick Fiber Optic Field"	**
**	•	**
******	**************	***

Rem This is a system level program that is not visible and is polled Rem before running test conditions

Load Encryption-table-module-table poll Read-Only-Memory-table

```
rem check Read only memory table by polling the table
0 = \text{"off"}
1 = "on"
h = aCopperField
i = bThinFiberopticfield
j = c1xThickFiberopticfield
k = d2xThickfiberopticfield
rem set switches to on or off and check conditions
if a or b = "Copper Field"
set 1
   move "1024" a
   move "1024" b
   move aCopperField h
   rem Symmetrical key for data integrity
       else
  if c or d = "Thin Fiber optic Field"
  set 1
   move "4096" c
   move "4096" d
   move bThinFiberopticfield i
   rem Asymmetrical key for data Integrity
   if e or f = "1 X Thick Fiber Optic Field"
   set 1
     move "8192" e
     move "8192" f
     move c1xThickFiberopticfield j
     rem Asymmetrical key for data Integrity
         else
       if g = " 2 X Thick Fiber Optic Field"
         set 1
     move "19456" g
     move d2xThickfiberopticfield k
     rem Asymmetrical key for data Integrity
          else
       poll Read-Only-memory-table
          set 0
       clear tables
       exit }
```

The process is not overly complex and it begins by loading a read only memory chip using a preconfigured set of parameters. The next step is to load the encryption table notice symmetrical and Asymmetrical table next poll the bits across the wires. I than test the conditions by setting a switch to 1 = on or 0 = off and test the wires to load the bits and specifications to the variable from here I begin the Internal packet processing.


The Encryption table provides extra layer of protection against a chip that has a Read only memory status example a scenario could be changing a archive bit to read and write instead of read only. As a additional note this interface with it's preset instructions can have a quantum bit that would only recognize this set of instructions by inserting a hexadecimal character. Example If my hex code goes 0 -255 I could create a special character thereby having 0-256 characters

and than insert the qubit = {special hexadecimal character code}. Thus I have formed the following

qubit-bits – bytes -frames-packets The next Chapter will be the usage of a Mathematical Equation.

Barry Mechanical Space

I will now like to present Barrys Mechanical Space a mathematical Equation for the purpose of promoting it's applicability and or adaptability. Space is represented by the different transmission modes solar Energy and Electro-Mechanical – bits. In this example I will use Solar Energy.

I will take the total number of bits and compress it 3 times and than take the address space and compress it twice also because sub-atomic particles Neutrinos clocked past the speed of light I will make this equation adaptable.

The Equation is written as follows

```
Barrys Mechanical Space = {20.773491458} * { 3.363585661 }
```

Barrys Mechanical Space = 69.873417997

This shows space is compressed twice to represent Solar Energy along with bits three times compressed so Energy is Dynamic and asymmetrical. If I wanted to combine the Solar Energy and Electro-Mechanical I simply use the equation by assigning a variable above and perform the calculations this time with Electro-Mechanical Energy

Barrys Mechanical Space =
$$\left\{\begin{array}{c} 2 \\ \hline 2 \\ \hline \end{array}\right\}$$
 * $\left\{\begin{array}{c} 16384 \\ \hline 2 \\ \hline \end{array}\right\}$ Barrys Mechanical Space = $\left\{\begin{array}{c} 1000 \\ \hline \end{array}\right\}$ * $\left\{\begin{array}{c} 16384 \\ \hline \end{array}\right\}$

The power Transmissions are Solar Energy-186225 mph and Electro-Mechanical 1000 mbs and the object is the bits 16384 in this example.

I will now present my final thoughts on this paper.

Final Thoughts

This science work served a 3 fold purpose and they are as follows:

- 1). Taking a not acknowledged Design Patent and creating a work that incorporates different elements.
 - 2). Making the math Equation Barrys Mechanical Space adaptable to different scenarios.
- 3). Showing how Mechanical Engineering can work with Computer Sciences examples Boolean operators, power transmissions, and some control logic used in a Read Only Chip-ROM.

As I have been studying different Mechanical Engineering Components, I have found that this field as very closely related to Computer Sciences some differences but highly adaptable as more devices employ digital concepts requiring usages of binary-bits and a understanding of details within the Computer-Motherboard that have some similarities to controlled logic boards

www.PublishResearc	If you enjoyed this work, Please take the time to go out to h.com where I have written other works.
	If you Google the following keywords, You will find these works listed
	Barry Crouse Network Topology Design
	Barry Crouse Physics
	Thank you for reading this work.
Dated 03/02/2015	
E-mail <u>barry.crouse@</u>	<u>yandex.com</u>
E-mail <u>becrouse2014</u>	@gmail.com
Barrys Scient	tific Based products is a State Registered Trademark of the State of Washington